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Abstract
We study one-dimensional systems constructed from a segment by employing
the Cantor-set rule up to an arbitrary stage of self-similar patterns. The
rigorous expression of the transfer matrix to describe the electromagnetic
waves propagating through them is presented. As displayed by numerical
demonstration, the transmission spectra change drastically with the increase
of the stage. At rather high stages the periodicity hidden in the self-similarity
comes out. This is the first theoretical description of sharp attenuation in the
transmission spectrum of electromagnetic waves propagating through a fractal
medium.

PACS numbers: 42.25.Bs, 78.20.Bh

The propagation of electromagnetic waves through a fractal medium with self-similar
symmetry has attracted much attention [1, 2]. In particular, light localization in the fractals is
interesting and important in the fields of science and technology [3–6]. Quite recently we have
discovered the localization of microwaves in the Menger sponge, which is typically a classic
fractal in three dimensions [7, 8]. Sharp single dips both in the transmission and reflection
spectra were observed at the same specific frequency. In order to understand inherently the
mechanism, theoretical approaches are desirable in addition to the numerical ones [9]. As far
as we know, no successful analytic study to elucidate the sharp attenuation in the transmission
spectrum exists.

On the other hand, from a theoretical point of view one-dimensional systems are attractive
because one can expect to obtain rigorous solutions. Indeed, there have been many studies for
electromagnetic waves and for Schrödinger waves in one-dimensional systems. The latter go
back to the late 1970s and early 1980s in the context of the Anderson localization in the tight
binding model [10]. However, for the case of electromagnetic waves there exist two degrees
of freedom, amplitude and phase, which make problems to be solved more difficult. Even
for the simplest case, the triadic Cantor set, studies have been restricted to numerical [11–13]
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or approximate [14] attempts. The other studies are limited to those with quasi-periodicity
[15, 16]. Therefore we should start with the Cantor set in the first step.

The triadic Cantor set is constructed from an initiator, which is a segment [a, b] with
L = b − a, by removing its middle third. The procedure of removing the middle third from
the remainders is repeated until a required stage n. We call this the nth-stage pre-Cantor set in
this letter. The true Cantor set in a mathematical sense appears in the limit of n → ∞.

Let us first prepare the basic formula of the transfer matrix. The electromagnetic waves
in a one-dimensional uniform system are generally represented by

E(x, t) = 1

2π

∫
dω e−iωt {Ar(ω) eikx + Al(ω) e−ikx}, (1)

where Ar(ω)(Al(ω)) denotes the amplitude of the wave propagating forward (backward) in
the positive (negative) x-direction and k = ω/v with constant velocity v.

We consider a system, which is composed of a material with a dielectric constant ε

embedded between a and b(a < b) and of vacuums (or airs) with a dielectric constant ε0

situated in x � a and x � b. k/k0 = √
ε/

√
ε0 is a material constant. We assume ε to be real

hereafter.
The continuity condition of the electromagnetic waves at x = a gives the following

relations among the amplitudes (Ar, Al) in x � a and (Br, Bl) in a � x � b:

eik0aAr + e−ik0aAl = eikaBr + e−ikaBl, (2)

k0 eik0aAr − k0 e−ik0aAl = k eikaBr − k e−ikaBl. (3)

These are easily summarized as(
Br

Bl

)
= S−1(k; a) · S(k0; a)

(
Ar

Al

)
, (4)

using the matrix defined by

S(k; a) =
(

eika e−ika

k eika −k e−ika

)
(5)

and its inverse matrix S−1(k; a). In a similar way, for the amplitudes (Cr, Cl) in x � b we
have (

Cr

Cl

)
= S−1(k0; b) · S(k; b)

(
Br

Bl

)
. (6)

Then one can give for the transfer matrix connecting the region of x � a to that of x � b

T (b, a) = S−1(k0; b) · S(k; b) · S−1(k; a) · S(k0; a), (7)

whose elements, denoted by

T (b, a) =
(

Trr Trl

Tlr Tll

)
, (8)

are

Trr = e−ik0(b−a){k++ eik(b−a) + k−−e−ik(b−a)} = T ∗
ll , (9)

Trl = e−ik0(b+a){k+− eik(b−a) + k−+ e−ik(b−a)} = T ∗
lr . (10)

Such abbreviations as
k++ = (1 + k/k0)(1 + k0/k)/4, k+− = (1 + k/k0)(1 − k0/k)/4,

k−+ = (1 − k/k0)(1 + k0/k)/4, k−− = (1 − k/k0)(1 − k0/k)/4
(11)
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satisfy the following identities:

k++k−− − k+−k−+ = 0, (12)

k+− + k−+ = 0, (13)

k2
++ + k2

−− − k2
+− − k2

−+ = 1. (14)

The elements of the transfer matrix depend not only on the width (b − a) of the medium
but also on its position (b +a). We would like to emphasize that the arrangement of the factors
in equations (9) and (10) is essential to avoid confusion in successive calculations.

We put the nth-stage pre-Cantor set in [a, b], where L = b − a. From the left side
the electromagnetic waves with the wave number k0 = ω/v0 illuminate. For the amplitudes(
A(n)

r , A
(n)
l

)
in x � a and

(
B(n)

r , B
(n)
l

)
in x � b, we have(

B(n)
r

B
(n)
l

)
= T (n)(b, a)

(
A(n)

r

A
(n)
l

)
. (15)

Below, we will study the transmission ratio t (n) and the phase shift δ(n), which are defined by

B(n)
r eik0L =

√
t (n) eiδ(n)

, (16)

under the conditions of A(n)
r = 1 and B

(n)
l = 0.

Due to the self-similarity of the triadic Cantor set, the transfer matrix T (n) for the nth stage
is constructed from that for the previous (n − 1)th stage with the identical shortest segments,

T (n)(b, a) = T (n−1)

(
b,

2b + a

3

)
· T (n−1)

(
b + 2a

3
, a

)
, (17)

with T (0)(b, a) = T (b, a) in equation (8).
Let here dn = L/3n and ν = k0L/9. For the first-stage pre-Cantor set, n = 1, we have

the respective elements of T (1)(b, a) through directly computing

T (1)
rr = e−ik0(b−a)

(
ξ 2

1 (d1) e3iν + |η1(d1)|2 e−3iν
) = T

(1)∗
ll , (18)

T
(1)
rl = e−ik0(b+a)(ξ1(d1) e3iν + ξ ∗

1 (d1) e−3iν)η1(d1) = T
(1)∗
lr , (19)

where

ξ1(d) = k++ eikd + k−− e−ikd , (20)

η1(d) = k+− eikd + k−+ e−ikd . (21)

An identity, |ξ1(d)|2 − |η1(d)|2 = 1, derived by using equations (12) and (14), leads to∣∣T (1)
rr

∣∣2 − ∣∣T (1)
rl

∣∣2 = 1.
Next we assume that the elements of T (n)(b, a) are given by

T (n)
rr = e−ik0(b−a)

(
ξ 2
n (dn) e3iν + |ηn(dn)|2 e−3iν

) = T
(n)∗
ll , (22)

T
(n)
rl = e−ik0(b+a)(ξn(dn) e3iν + ξ ∗

n (dn) e−3iν)ηn(dn) = T
(n)∗
lr . (23)

Substituting above into equation (17) clarifies that the assumption is justified if

ξn(dn) = ξ 2
n−1(dn) eiν + |ηn−1(dn)|2 e−iν, (24)

ηn(dn) = (ξn−1(dn) eiν + ξ ∗
n−1(dn) e−iν)ηn−1(dn) (25)
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are satisfied with the initial terms ξ1(dn) and η1(dn). Dependence of T (n)(b, a) on the material
constant k/k0 = √

ε/
√

ε0 arises from ξ1(dn) and η1(dn). We note again

|ξn(dn)|2 − |ηn(dn)|2 = (|ξ1(dn)|2 − |η1(dn)|2)2n−1

= 1, (26)

which yields ∣∣T (n)
rr

∣∣2 − ∣∣T (n)
rl

∣∣2 = 1. (27)

Although equations (24) and (25) are very complicated, the following transformations
make them simple. We introduce

un = {ξn(dn) eiν + ξ ∗
n (dn) e−iν}/2, (28)

vn = −i{ξn(dn) eiν − ξ ∗
n (dn) e−iν}/2 (29)

and

pn = {ηn(dn) + η∗
n(dn)}/2, (30)

qn = −i{ηn(dn) − η∗
n(dn)}/2. (31)

Their initial values are

u1 = Kn cos(ν + θn), (32)

v1 = Kn sin(ν + θn), (33)

p1 = (k+− + k−+) sin(kdn) = 0, (34)

q1 = κ− sin kdn, (35)

where

Kn =
√

cos2 kdn + κ2
+ sin2 kdn � 1, (36)

tan θn = κ+ sin kdn

cos kdn

(37)

and

κ+ =
(

k

k0
+

k0

k

)/
2 � 1, (38)

κ− =
(

k

k0
− k0

k

)/
2 > 0. (39)

For later use we divide the ω region into 
1,
2 and 
3, where

ω ∈ 
1 if |Kn cos(ν + θn)| � 1,

ω ∈ 
2 if Kn cos(ν + θn) > 1,

ω ∈ 
3 if Kn cos(ν + θn) < −1,

(40)

Substituting equations (28)–(31) into equations (24) and (25), we can straightforwardly
derive following recurrence equations, for n � 2:
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un = 2u2
n−1 − |ξn−1(dn)|2 + |ηn−1(dn)|2 = 2u2

n−1 − 1, (41)

vn = 2un−1vn−1, (42)

pn = 2un−1pn−1, (43)

qn = 2un−1qn−1. (44)

The solution of equation (41) is immediately obtained by transforming un = cos φn or
cosh φn corresponding to |un| � 1 or un > 1, respectively, for n � 2,

un =
{

cos(2n−1φ1) for ω ∈ 
1,

cosh(2n−1φ1) for ω ∈ (
2 ∪ 
3),
(45)

where φ1 is determined by

u1 = Kn cos(ν + θn) =
{

cos φ1 for ω ∈ 
1,

cosh φ1 for ω ∈ 
2.
(46)

If u1 > 1 and even if u1 < −1, un is kept to be larger than 1 for n � 2. When
|u1| � 1, |un| � 1(n � 2).

Next, equation (42) easily gives

vn = 22un−1un−2vn−2 = · · · = 2n−1v1

n−1∏
j=1

uj . (47)

Similarly we have

pn = 2n−1p1

n−1∏
j=1

uj = 0, (48)

qn = 2n−1q1

n−1∏
j=1

uj . (49)

Since the rigorous expression of the transfer matrix T (n)(b, a) can be obtained
successfully, we can extract any information of the electromagnetic waves propagating through
the nth-stage pre-Cantor set. In this letter, our interests are limited to the transmission ratio t (n)

and the phase shift δ(n). Using equation (15) under the conditions of A(n)
r = 1 and B

(n)
l = 0,

we have

B(n)
r = (∣∣T (n)

rr

∣∣2 − ∣∣T (n)
rl

∣∣2)/
T

(n)
ll = 1

/
T

(n)
ll . (50)

Then from the definition (16), the transmission ratio t (n) and the phase shift δ(n) are given as

t (n) = ∣∣B(n)
r

∣∣2 = 1

1 + 4q2
n(un cos 2ν − vn sin 2ν)2

, (51)

and

δ(n) = ν + ψ(n), (52)

respectively, where

tan ψ(n) = 2unvn − q2
n sin 4ν

u2
n − v2

n + q2
n cos 4ν

. (53)

In this case, the reflection ratio r(n) = |A(n)
l |2 is given by r(n) = 1 − t (n) because

equation (27) holds.
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Figure 1. The transmission spectrum t (3) (left axis, solid curve) and the phase shift δ(3) (right axis,
broken curve) for the third-stage pre-Cantor set as functions of k0L.
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Figure 2. The transmission spectrum t (6) (left axis, solid curve) and the phase shift δ(6) (right axis,
broken curve) for the sixth-stage pre-Cantor set as functions of k0L.

One can easily compute numerically, without any limitations, the transmission spectrum
and the phase shift for the arbitrary-stage pre-Cantor set by substituting equations (45), (47)
and (49) into equations (51) and (52). Simultaneously, the tests whether the solution in
equation (45) is unique or not have been performed by solving numerically equation (41). We
take ε/ε0 = 8.8 for an epoxy resin mixed with metal oxides [8].

For relatively low stages, the spectra are rather complicated as reported in previous papers
[11–13] and as shown in figure 1, where t (3) and δ(3) are displayed as functions of k0L = ωL/v0

with the light velocity v0. The number of computed points for 0 � k0L � 100 is 212.
One finds some masked regions where t (3) is not absolute but almost zero. The masked

regions correspond nearly to 
2 or 
3 defined in equation (40), because the condition |u1| > 1
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Figure 3. The transmission spectrum t (10) (left axis, solid curve) and the phase shift δ(10) (right
axis, broken curve) for the tenth-stage pre-Cantor set as functions of k0L.
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Figure 4. The transmission spectrum t (6) (left axis, solid curve) and the phase shift δ(6) (right axis,
broken curve) for the sixth-stage pre-Cantor set as functions of k0L in the case of ε/ε0 = 2.8.

leads to the almost total reflection. The spectra do not show the self-similarity particular to
fractals. The reason is because the electromagnetic waves propagate not only through the
media with the self-similar symmetry, but also through the complementary spaces (the airs)
without the symmetry.

As the stage is increased the masked regions become narrower step-by-step as shown in
figures 2–3. Eventually only lines like hanged ropes can be seen. Their positions are given
by cos ν = ±1 or k0L = 9π
, (
 = any positive integers), which are the boundaries between

1 and 
2 or between 
1 and 
3, because Kn and θn tend to unity and 0, respectively,
as n is increased. However, the hanged ropes rise slowly from the left, that is, the values
of t (n) at k0L = 9π
 increase gradually in the order from smaller 
 as shown initially in
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figure 3. Although the phase shift δ(10) seems to increase smoothly with a constant slope,
its derivative changes drastically at k0L = 9π
, as examined numerically. Finally in the
limit of n → ∞, t (n) is expected to take unity everywhere. In this limit the transfer matrix
T (n)(b, a) tends to the unit matrix, because the Lebesgue measure of the true Cantor set
vanishes [17].

At last, for comparison, we display the computation result in figure 4, obtained by
changing the dielectric constant into ε/ε0 = 2.8 corresponding to an epoxy resin [7]. The
narrowing and rising of the dips occur at relatively lower stages.

In conclusion, we have succeeded in obtaining the rigorous expression of the transfer
matrix for an arbitrary-stage pre-Cantor set. By using it, the transmission spectrum and the
phase shift have been calculated exactly. Numerical computations have revealed the hidden
periodicity in the self-similar symmetry, which leads to the first theoretical description of the
sharp attenuation in the transmission spectrum of electromagnetic waves propagating through
a fractal medium, as observed in the experiment [7, 8].
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